《阿加莎》 北京时间11月30日消息,据外国媒体报道,《旺达幻视》衍生剧《阿加莎》发布幕后特辑,女巫回归,前瞻更有趣的故事,明年秋天开播。全国第一批入选单位共6家,第二批入选单位共15家。
鱼片怎么上浆即嫩又不脱桨,谁知道的详细说下 将鱼片上浆使其嫩又不脱桨的方法如下: 所需材料: - 鱼片 - 盐 - 白胡椒粉 - 淀粉 - 蛋白 - 料酒 - 鸡精(可选) 步骤: 1. 鱼片用清水冲洗干净,用厨房纸巾吸干水分。 2. 在鱼片表面均匀撒上盐和白胡椒粉,腌制约15-20分钟。 3. 准备一个容器,将适量淀粉放入其中。逐渐加入料酒和蛋白,同时搅拌均匀,直到淀粉变成糊状。 4. 将腌制好的鱼片放入淀粉糊中,用手轻轻拍打,使其均匀上浆。注意不要用力过猛,以免鱼片破裂。 5. 上浆完成后,可以用手抖动鱼片,使多余的淀粉自然掉落。 6. 锅中加热适量的油,待油温达到中高温(约180°C)时,将上浆好的鱼片逐一放入锅中炸至金黄色。 7. 炸好的鱼片沥干油,装盘即可。 8. 如有需要,可以在最后撒上适量的鸡精增添味道。 注意事项: - 在上浆之前,确保鱼片表面的水分已经被吸干,这样可以避免水分渗出导致脱桨。 - 淀粉的量可以根据需要进行调整,一般来说,约1:1的淀粉和蛋白比例可以得到较好的浆水效果。 - 炸鱼片时,油温不宜过高,过高的温度容易导致鱼片变硬。 - 炸鱼片时,可以将鱼片逐一放入锅中,避免粘连在一起。 希望以上方法能满足您的需求!产出的平菇口感嫩滑、有脆性。武汉将围绕“965”现代产业体系,持续推进“数字化产线—智能车间(智能化改造示范项目)—标杆智能工厂—数字领航企业”未来工厂四级梯队建设,加快智能制造技术突破、制造工艺创新与企业转型升级,锻造产业竞争新优势,厚植先进制造业的新质生产力。
(1-1/2)+(1/2-1/3)+(1/3-1/4)+···+(1/2009-1/2010 To find the sum of the given series, we need to add all the terms together. (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/2009 - 1/2010) We can simplify each term by finding the common denominator. 1 - 1/2 = 2/2 - 1/2 = 1/2 1/2 - 1/3 = 3/6 - 2/6 = 1/6 1/3 - 1/4 = 4/12 - 3/12 = 1/12 We can observe that each term follows this pattern - the denominator of the second fraction becomes the denominator of the first fraction in the next term. So, the series can be written as: 1/2 + 1/6 + 1/12 + ... + 1/2009 To find the sum of this series, we need to find the common denominator of all the fractions. The common denominator of 2, 6, 12, ..., 2009 will be the least common multiple (LCM) of these numbers. Calculating the LCM of these numbers is a bit lengthy. Instead, we can find the LCM of 2, 3, 4, ..., 2010, and then divide by the LCM of 2, 3, 4, ..., 2009. LCM(2, 3, 4, ..., 2010) / LCM(2, 3, 4, ..., 2009) = 2010 / 2 = 1005 So, the common denominator is 1005. To add the fractions, we need to express them with the common denominator: 1/2 = (1/2) * (1005/1005) = 1005/2010 1/6 = (1/6) * (1005/1005) = 167.5/2010 1/12 = (1/12) * (1005/1005) = 83.75/2010 Now we can add: 1005/2010 + 167.5/2010 + 83.75/2010 + ... + 1/2009 We can observe that the denominators of the fractions form an arithmetic sequence, and the numerators follow the same pattern. Using the formula for the sum of an arithmetic sequence: Sum = (first term + last term) * number of terms / 2 In this case, the first term is 1005/2010, the last term is 1/2009, and the number of terms is 2010. Sum = (1005/2010 + 1/2009) * 2010/2 Sum = (1005/2010 + 1/2009) * 1005 Sum = (1005 * 2009 + 1 * 2010) / 2 Sum = (2019955 + 2010) / 2 Sum = 2021965 / 2 Sum = 1010982.5 Therefore, the sum of the given series is 1010982.5.有焦虑去买PHEV的MPV就行,又不是非得纯电MPV。 聚焦“谁来讲”,打造特色团队。